This project has been commissioned by the Victoria and Albert Museum for the Food bigger than the plate exhibition.
Five cheeses have been maturing in a specially-created ‘cheese cave’ at Open Cell, a biolab in West London, ready for display in the V&A’s FOOD exhibition. What’s special about these cheeses is that they have been made with bacteria harvested from the skin (armpits, toes, belly button, nostrils) of some well-known personalities. It might sound a bit gross – but bear with us! Making ‘human cheese’ is a fascinating journey into the world of microbes, from their culinary importance to the vital role they play in how our bodies work.
For the past few months, five cheeses have been maturing in a specially-created ‘cheese cave’ at Open Cell, a biolab in West London, ready for display in the V&A’s FOOD exhibition. What’s special about these cheeses is that they have been made with bacteria harvested from the skin (armpits, toes, belly button, nostrils) of some well-known personalities. It might sound a bit gross – but bear with us! Making ‘human cheese’ is a fascinating journey into the world of microbes, from their culinary importance to the vital role they play in how our bodies work.
The form and flavour of different cheeses depend on the bacteria used at the beginning (the ‘starter culture’) and how the cheesemaker manages the microbial communities that grow on the cheese as it matures. Traditionally the ‘starter’ bacteria comes from the first bit of milk from the cow’s udder which meant that each cheese was unique to a particular farm and cow. Today most cheeses use more uniform commercial strains of bacteria.
What inspired the ‘Selfmade’ project, originally conceived by Christina Agapakis (a synthetic biologist) and Sissel Tolaas (an artist who works with smell), is the fact that many of the microbes involved in cheesemaking bear a close relationship to those found on human skin. The similarities between cheese aromas and body odours are no coincidence. Whether we find these odours disgusting or delicious has a great deal to do with context and psychology. Desirable flavour notes in our favourite cheese can repel us when they are associated with the human body.
Making the ‘human cheeses’ followed the same basic process as ordinary cheese-making, except that the starter culture for each cheese was bacteria harvested from the skin of a particular individual, in this case musician and cheesemaker Alex James (Blur), who chose to be recreated as Cheshire cheese, chef Heston Blumenthal (comté cheese), British rapper Professor Green (mozzarella), baker and food writer Ruby Tandoh (stilton), and Madness frontman Suggs (cheddar). Starting with a skin swab, the bacteria was grown in the lab until there was enough to make the cheese, and in order to analyse which kinds of bacteria were growing. Once fully matured, each cheese will be a unique microbial portrait of the donor (while you are 99.9% identical to the person sitting next to you in terms of DNA, this is not true of your microbes, you might only share 10% similarity) – like a celebrity selfie in cheese form!
Why do it?
Aside from proving that the microbes inhabiting our skin can do a good job of making cheese, what can we learn from doing it? The answer lies in challenging our squeamishness and enhancing our appreciation of the microbial world.
When scientists first saw microbes under the microscope in the 19th century, they realised that some of them were the cause of human illness. Processes for killing bacteria such as the pasteurisation of food and the sterilisation of medical instruments have prevented illness and saved countless human lives. But along with the bad bacteria, we routinely destroy many that may be crucial to our wellbeing.
Our bodies are teaming with microbes. We have ten times as many microbial cells as human ones. They interact with each other, performing different roles, helping to form us, feed us and protect us. It is now thought that the composition of our microbiome may even affect our mood, weight, intelligence and personality. And as scientists develop new techniques for studying microbes, the popular assumption that they are only a source of harm or embarrassment (unwanted smells) is giving way to a much more complex understanding of the extraordinary things they do for us.
So, is it edible?
The cheeses are being sequenced in the lab to find out exactly what species of bacteria they contain and whether they are edible in terms of food safety. Our skin is home to millions of bacteria, fungi and viruses that compose the skin microbiota, similar to those in our gut. The challenge is to identify the good bacteria and to eliminate the bad in order to get a cheese that hosts the right microbes to make it edible and tasty.